Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Front Bioeng Biotechnol ; 11: 1112755, 2023.
Article in English | MEDLINE | ID: covidwho-2259405

ABSTRACT

Small interfering RNA (siRNA)-mediated mRNA degradation approach have imparted its eminence against several difficult-to-treat genetic disorders and other allied diseases. Viral outbreaks and resulting pandemics have repeatedly threatened public health and questioned human preparedness at the forefront of drug design and biomedical readiness. During the recent pandemic caused by the SARS-CoV-2, mRNA-based vaccination strategies have paved the way for a new era of RNA therapeutics. RNA Interference (RNAi) based approach using small interfering RNA may complement clinical management of the COVID-19. RNA Interference approach will primarily work by restricting the synthesis of the proteins required for viral replication, thereby hampering viral cellular entry and trafficking by targeting host as well as protein factors. Despite promising benefits, the stability of small interfering RNA in the physiological environment is of grave concern as well as site-directed targeted delivery and evasion of the immune system require immediate attention. In this regard, nanotechnology offers viable solutions for these challenges. The review highlights the potential of small interfering RNAs targeted toward specific regions of the viral genome and the features of nanoformulations necessary for the entrapment and delivery of small interfering RNAs. In silico design of small interfering RNA for different variants of SARS-CoV-2 has been discussed. Various nanoparticles as promising carriers of small interfering RNAs along with their salient properties, including surface functionalization, are summarized. This review will help tackle the real-world challenges encountered by the in vivo delivery of small interfering RNAs, ensuring a safe, stable, and readily available drug candidate for efficient management of SARS-CoV-2 in the future.

2.
Pharmaceutics ; 14(11)2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2116088

ABSTRACT

RNAi (RNA interference)-based technology is emerging as a versatile tool which has been widely utilized in the treatment of various diseases. siRNA can alter gene expression by binding to the target mRNA and thereby inhibiting its translation. This remarkable potential of siRNA makes it a useful candidate, and it has been successively used in the treatment of diseases, including cancer. However, certain properties of siRNA such as its large size and susceptibility to degradation by RNases are major drawbacks of using this technology at the broader scale. To overcome these challenges, there is a requirement for versatile tools for safe and efficient delivery of siRNA to its target site. Lipid nanoparticles (LNPs) have been extensively explored to this end, and this paper reviews different types of LNPs, namely liposomes, solid lipid NPs, nanostructured lipid carriers, and nanoemulsions, to highlight this delivery mode. The materials and methods of preparation of the LNPs have been described here, and pertinent physicochemical properties such as particle size, surface charge, surface modifications, and PEGylation in enhancing the delivery performance (stability and specificity) have been summarized. We have discussed in detail various challenges facing LNPs and various strategies to overcome biological barriers to undertake the safe delivery of siRNA to a target site. We additionally highlighted representative therapeutic applications of LNP formulations with siRNA that may offer unique therapeutic benefits in such wide areas as acute myeloid leukaemia, breast cancer, liver disease, hepatitis B and COVID-19 as recent examples.

3.
Int J Biol Macromol ; 221: 71-82, 2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2007741

ABSTRACT

The spreading of coronavirus from contacting surfaces and aerosols created a pandemic around the world. To prevent the transmission of SARS-CoV-2 virus and other contagious microbes, disinfection of contacting surfaces is necessary. In this study, a disinfection box equipped with infrared (IR) radiation heating and ultraviolet-C (UV-C) radiation is designed and tested for its disinfection ability against pathogenic bacteria and SARS-CoV-2 spike protein. The killing of a Gram-positive, namely, S. aureus and a Gram-negative namely, S. typhi bacteria was studied followed by the inactivation of the spike protein. The experimental parameters were optimized using a statistical tool. For the broad-spectrum antibacterial activity, the optimum condition was holding at 65.61 °C for 13.54 min. The killing of the bacterial pathogen occurred via rupturing the cell walls as depicted by electron microscopy. Further, the unfolding of SARS-CoV-2 spike protein and RNase A was studied under IR and UV-C irradiations at the aforesaid optimized condition. The unfolding of both the proteins was confirmed by changes in the secondary structure, particularly an increase in ß-sheets and a decrease in α-helixes. Remarkably, the higher penetration depth of IR waves up to subcutaneous tissue resulted in lower optimum disinfection temperature, <70 °C in vogue. Thus, the combined UV-C and IR radiation is effective in killing the pathogenic bacteria and denaturing the glycoproteins.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Disinfection/methods , SARS-CoV-2 , Staphylococcus aureus , Respiratory Aerosols and Droplets , Ultraviolet Rays
4.
Environ Res ; 198: 111309, 2021 07.
Article in English | MEDLINE | ID: covidwho-1225237

ABSTRACT

SARS-CoV-2 virus and other pathogenic microbes are transmitted to the environment through contacting surfaces, which need to be sterilized for the prevention of COVID-19 and related diseases. In this study, a prototype of a cost-effective sterilization box is developed to disinfect small items. The box utilizes ultra violet (UV) radiation with heat. For performance assessment, two studies were performed. First, IgG (glycoprotein, a model protein similar to that of spike glycoprotein of SARS-COV-2) was incubated under UV and heat sterilization. An incubation with UV at 70 °C for 15 min was found to be effective in unfolding and aggregation of the protein. At optimized condition, the hydrodynamic size of the protein increased to ~171 nm from ~5 nm of the native protein. Similarly, the OD280 values also increased from 0.17 to 0.78 indicating the exposure of more aromatic moieties and unfolding of the protein. The unfolding and aggregation of the protein were further confirmed by the intrinsic fluorescence measurement and FTIR studies, showing a 70% increase in the ß-sheets and a 22% decrease in the α-helixes of the protein. The designed box was effective in damaging the protein's native structure indicating the effective inactivation of the SARS-COV-2. Furthermore, the incubation at 70 °C for 15 min inside the chamber resulted in 100% antibacterial efficacy for the clinically relevant E.coli bacteria as well as for bacteria collected from daily use items. It is the first detailed performance study on the efficacy of using UV irradiation and heat together for disinfection from virus and bacteria.


Subject(s)
COVID-19 , Ultraviolet Rays , Hot Temperature , Humans , SARS-CoV-2 , Virus Inactivation
5.
Expert Rev Proteomics ; 17(6): 425-432, 2020 06.
Article in English | MEDLINE | ID: covidwho-638970

ABSTRACT

INTRODUCTION: Rapid transmission of the severe acute respiratory syndrome coronavirus 2 has affected the whole world and forced it to a halt (lockdown). A fast and label-free detection method for the novel coronavirus needs to be developed along with the existing enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR)-based methods. AREAS COVERED: In this report, biophysical aspects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein are outlined based on its recent reported electron microscopy structure. Protein binding sites are analyzed theoretically, which consisted of hydrophobic and positive charged amino acid residues. Different strategies to form mixed self-assembled monolayers (SAMs) of hydrophobic (CH3) and negatively charged (COOH) groups are discussed to be used for the specific and strong interactions with spike protein. Bio-interfacial interactions between the spike protein and device (sensor) surface and its implications toward designing suitable engineered surfaces are summarized. EXPERT OPINION: Implementation of the engineered surfaces in quartz crystal microbalance (QCM)-based detection techniques for the diagnosis of the novel coronavirus from oral swab samples is highlighted. The proposed strategy can be explored for the label-free and real-time detection with sensitivity up to ng level. These engineered surfaces can be reused after desorption.


Subject(s)
Betacoronavirus/chemistry , Clinical Laboratory Techniques/methods , Quartz Crystal Microbalance Techniques/instrumentation , Spike Glycoprotein, Coronavirus/chemistry , Betacoronavirus/immunology , Betacoronavirus/metabolism , Binding Sites , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques/instrumentation , Coronavirus Infections/diagnosis , Humans , Hydrophobic and Hydrophilic Interactions , Limit of Detection , Microscopy, Atomic Force , Protein Conformation , Quartz Crystal Microbalance Techniques/methods , SARS-CoV-2 , Spectroscopy, Fourier Transform Infrared , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Surface Properties
6.
Non-conventional in English | WHO COVID | ID: covidwho-725261

ABSTRACT

The outermost surfaces of Personal Protective Equipments (PPEs) interact with virus surface-protein as the first step during its transmission from aerosols and contacting surfaces, which can be tuned by surface engineering/modification. This report highlights the role of engineered surface chemistry of PPEs to avoid the spreading of the novel SARS-CoV-2 virus in hospitals. Physical properties of surfaces and spike-glycoprotein are correlated with the reported stability of SARS-CoV-2. The spike-protein is reported to be hydrophobic in nature with an isoelectric point of 5.9. Hence surface with both positive charge and hydrophobic groups are expected to achieve a strong binding with the surface spike-protein. Various surface engineering strategies of polypropylene and other materials with hybrid self-assembled monolayers and dopamine are discussed to design the mixed hydrophobic and charged surfaces. The strong surface-protein interactions may lead to severe conformational changes and destabilization of the viral envelope, which can disintegrate and inactivate the novel coronavirus.

SELECTION OF CITATIONS
SEARCH DETAIL